LogoThread Easy
  • 탐색
  • 스레드 작성
LogoThread Easy

트위터 스레드의 올인원 파트너

© 2025 Thread Easy All Rights Reserved.

탐색

Newest first — browse tweet threads

Keep on to blur preview images; turn off to show them clearly

yes I consciously try to be true to Eastern European evaluation philosophy. I will praise honest effort near-unconditionally, but I will only strongly endorse true excellence. And my endorsement is easy to lose.
I hope this serves some function in the world

yes I consciously try to be true to Eastern European evaluation philosophy. I will praise honest effort near-unconditionally, but I will only strongly endorse true excellence. And my endorsement is easy to lose. I hope this serves some function in the world

We're in a race. It's not USA vs China but humans and AGIs vs ape power centralization. @deepseek_ai stan #1, 2023–Deep Time «C’est la guerre.» ®1

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Fri Nov 28 02:09:06
RT @ayushtweetshere: This is a steal..

Arvids books and courses have helped me so much over the years.. 

Don’t miss out 👇

RT @ayushtweetshere: This is a steal.. Arvids books and courses have helped me so much over the years.. Don’t miss out 👇

Building https://t.co/od97B0HVrk and https://t.co/666FnyVVE0 in Public. Raising all the boats with kindness. 🎙️ https://t.co/6w69DZmi8H · ✍️ https://t.co/lpnor5rsTW

avatar for Arvid Kahl
Arvid Kahl
Fri Nov 28 02:08:57
Humans train autonomous cars in simulation for hundreds of thousands of miles over weeks and months, then throw them onto real streets to gather even more data, retrain them again for weeks and months and after a decade we’re still nowhere near Level 5 autonomy.

A human learns to drive in days, not years. Practically competent in under a week. That’s because humans have extraordinary perception, adaptation, and online learning baked in long before they ever touch a steering wheel.

The truth is, we approached machine autonomy from the wrong starting point.
It’s not primarily a data problem. It’s not just a compute problem either.

The real bottleneck, as it seems to me, is algorithmic understanding, how knowledge is represented, compressed, and processed. Until we rethink that foundation, no amount of data or GPUs will magically produce real autonomy.

Humans train autonomous cars in simulation for hundreds of thousands of miles over weeks and months, then throw them onto real streets to gather even more data, retrain them again for weeks and months and after a decade we’re still nowhere near Level 5 autonomy. A human learns to drive in days, not years. Practically competent in under a week. That’s because humans have extraordinary perception, adaptation, and online learning baked in long before they ever touch a steering wheel. The truth is, we approached machine autonomy from the wrong starting point. It’s not primarily a data problem. It’s not just a compute problem either. The real bottleneck, as it seems to me, is algorithmic understanding, how knowledge is represented, compressed, and processed. Until we rethink that foundation, no amount of data or GPUs will magically produce real autonomy.

Founder @ https://t.co/AwROlKt7z7

avatar for Faruk Guney
Faruk Guney
Fri Nov 28 02:07:26
RT @indie_maker_fox: 最近试着从0去vibe coding一个项目,效率很低

对比起来,基于模板去vibe coding效率就高多了

并不是因为卖模板所以夸模板效率高,事实是大模型很擅长阅读项目已有代码,在此基础之上新增功能只要之前有类似的,那效率叫一个…

RT @indie_maker_fox: 最近试着从0去vibe coding一个项目,效率很低 对比起来,基于模板去vibe coding效率就高多了 并不是因为卖模板所以夸模板效率高,事实是大模型很擅长阅读项目已有代码,在此基础之上新增功能只要之前有类似的,那效率叫一个…

🔥 The best AI SaaS boilerplate - https://t.co/VyNtTs0jSX 🚀 The best directory boilerplate with AI - https://t.co/wEvJ1Dd8aR 🎉 https://t.co/bh1RxeERuY & https://t.co/zubXJCoY92 & https://t.co/tfQf8T7gGF

avatar for Fox@MkSaaS.com
Fox@MkSaaS.com
Fri Nov 28 02:01:43
Whatever the fuck is going on in China – slowdown, acceleration, involution, transformation – they'll only react to salient trend or narrative deviations to farm engagement. There's no market for calm holistic long-term analysis of fundamentals here.

Whatever the fuck is going on in China – slowdown, acceleration, involution, transformation – they'll only react to salient trend or narrative deviations to farm engagement. There's no market for calm holistic long-term analysis of fundamentals here.

We're in a race. It's not USA vs China but humans and AGIs vs ape power centralization. @deepseek_ai stan #1, 2023–Deep Time «C’est la guerre.» ®1

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Fri Nov 28 02:01:38
在一次访谈中,亚马逊的贝佐斯分享了他最喜欢的面试问题:

“我问候选人,能否举一个自己‘创造’的例子。我会特别说明,这不一定要是拿到专利的重大发明,也可以是你设计的一套指标、一个严格执行的流程,或者优化过的工作方法。

关键是要找到那些‘喜欢跳出思维框架去创造’的人。”

很多人面对这样的问题,第一反应往往是给出“非此即彼”的答案,比如“我们可以做A,或者做B”。但贝佐斯认为,真正有创造力的思考者从不满足于此。他说:“真正该问的是‘我们如何同时做到A和B?’,而不是简单选择其一。我们需要的,是能找到一种方法,让看似矛盾的目标都能实现的‘创造’。”

这种“既要又要”的思维方式,其实是创新的核心。无论是个人成长还是企业发展,我们常常面临“资源有限”“时间冲突”“目标多元”的困境。如果固守“要么A要么B”的二元思维,很可能会陷入非此即彼的取舍,甚至错过两者结合的可能性。而“创造”的本质,就在于打破这种对立,找到第三条路,或者用新的方式让看似不可能的目标共存。

对个人而言,这意味着在工作中不局限于“我只能做这个”,而是思考“如何把我擅长的和需要的结合起来”;对企业而言,这是突破行业边界、创造新价值的关键。贝佐斯的问题,本质上是在寻找那些具备“系统思维”和“突破力”的人——他们不被现有规则束缚,愿意用创造性的方法解决复杂问题,最终实现看似矛盾的目标。这种能力,正是驱动个人和组织持续进步的核心动力。

在一次访谈中,亚马逊的贝佐斯分享了他最喜欢的面试问题: “我问候选人,能否举一个自己‘创造’的例子。我会特别说明,这不一定要是拿到专利的重大发明,也可以是你设计的一套指标、一个严格执行的流程,或者优化过的工作方法。 关键是要找到那些‘喜欢跳出思维框架去创造’的人。” 很多人面对这样的问题,第一反应往往是给出“非此即彼”的答案,比如“我们可以做A,或者做B”。但贝佐斯认为,真正有创造力的思考者从不满足于此。他说:“真正该问的是‘我们如何同时做到A和B?’,而不是简单选择其一。我们需要的,是能找到一种方法,让看似矛盾的目标都能实现的‘创造’。” 这种“既要又要”的思维方式,其实是创新的核心。无论是个人成长还是企业发展,我们常常面临“资源有限”“时间冲突”“目标多元”的困境。如果固守“要么A要么B”的二元思维,很可能会陷入非此即彼的取舍,甚至错过两者结合的可能性。而“创造”的本质,就在于打破这种对立,找到第三条路,或者用新的方式让看似不可能的目标共存。 对个人而言,这意味着在工作中不局限于“我只能做这个”,而是思考“如何把我擅长的和需要的结合起来”;对企业而言,这是突破行业边界、创造新价值的关键。贝佐斯的问题,本质上是在寻找那些具备“系统思维”和“突破力”的人——他们不被现有规则束缚,愿意用创造性的方法解决复杂问题,最终实现看似矛盾的目标。这种能力,正是驱动个人和组织持续进步的核心动力。

Research Scientist @Google | Previously PhD @nlp_usc, B.Eng @TsinghuaNLP 找工作、找面试题、改简历、模拟面试。关注: 创业(冷启动) | 认知心理学|智能体 | 强化学习 building:https://t.co/A4YmEz9yqG

avatar for Y11
Y11
Fri Nov 28 02:00:17
  • Previous
  • 1
  • More pages
  • 2158
  • 2159
  • 2160
  • More pages
  • 5634
  • Next