Keep on to blur preview images; turn off to show them clearly

~20 yrs in web-dev, now mostly Laravel. My Laravel courses: https://t.co/HRUAJdMRZL My Youtube channel: https://t.co/qPQAkaov2F


Opening portals to handheld VR at https://t.co/A2JMItorCV. Problems soluble, potential to improve invariant.


curious guy creating things @ https://t.co/HXWladhJaA - up and coming wife guy


building @YumeBank - chime backed by stablecoins / prev @magiceden @snapchat @square / built @bruh_bears @web3zer0 / react native OSS


Founder and CEO of @acquiredotcom. https://t.co/wRMIssDmhl has helped 100s of startups get acquired and facilitated $500m+ in closed deals.

![And here’s the code itself; you can paste this directly into Google Colab and it generates the plot:
import numpy as np, matplotlib.pyplot as plt
R=10.0; P=34.0; q=2*np.pi/P
nz,nk=720,560; kz_max,kp_max=2.0,2.0
sigma_z=0.04; mmax=20; delta_phi=np.pi; delta_z=P/2.0
h=3.4; N_bp=400; beta=0.25
kz=np.linspace(-kz_max,kz_max,nz); kp=np.linspace(0,kp_max,nk)
n_tau=512; tau=np.linspace(0,np.pi,n_tau); s_tau=np.sin(tau)
def Jv(m,x):
x=np.asarray(x); ph=m*tau[None,:]-x[:,None]*s_tau[None,:]
return np.trapz(np.cos(ph),tau,axis=1)/np.pi
I=np.zeros((nz,nk),dtype=np.float64)
for m in range(-mmax,mmax+1):
Jm=Jv(abs(m),kp*R); L=np.exp(-0.5*((kz-m*q)/sigma_z)**2)[:,None]
A2=2.0+2.0*np.cos(m*delta_phi+kz[:,None]*delta_z)
I+=(Jm*Jm)[None,:]*L*A2
eps=1e-9
S=(np.sin(0.5*N_bp*h*kz)**2)/((np.sin(0.5*h*kz)**2)+eps); S=(S/(S.max()+eps))[:,None]
I*=1.0+beta*S
I/=I.max()+1e-12; I=np.log1p(12*I)
I_full=np.concatenate([I[:,::-1],I],axis=1)
extent=[-kp_max,kp_max,-kz_max,kz_max]
plt.figure(figsize=(6,8))
plt.imshow(I_full,extent=extent,origin='lower',aspect='auto')
plt.axis('off')
plt.savefig('photo51_like.png',dpi=220,bbox_inches='tight',pad_inches=0.02)
https://t.co/HDadZBCvO4() And here’s the code itself; you can paste this directly into Google Colab and it generates the plot:
import numpy as np, matplotlib.pyplot as plt
R=10.0; P=34.0; q=2*np.pi/P
nz,nk=720,560; kz_max,kp_max=2.0,2.0
sigma_z=0.04; mmax=20; delta_phi=np.pi; delta_z=P/2.0
h=3.4; N_bp=400; beta=0.25
kz=np.linspace(-kz_max,kz_max,nz); kp=np.linspace(0,kp_max,nk)
n_tau=512; tau=np.linspace(0,np.pi,n_tau); s_tau=np.sin(tau)
def Jv(m,x):
x=np.asarray(x); ph=m*tau[None,:]-x[:,None]*s_tau[None,:]
return np.trapz(np.cos(ph),tau,axis=1)/np.pi
I=np.zeros((nz,nk),dtype=np.float64)
for m in range(-mmax,mmax+1):
Jm=Jv(abs(m),kp*R); L=np.exp(-0.5*((kz-m*q)/sigma_z)**2)[:,None]
A2=2.0+2.0*np.cos(m*delta_phi+kz[:,None]*delta_z)
I+=(Jm*Jm)[None,:]*L*A2
eps=1e-9
S=(np.sin(0.5*N_bp*h*kz)**2)/((np.sin(0.5*h*kz)**2)+eps); S=(S/(S.max()+eps))[:,None]
I*=1.0+beta*S
I/=I.max()+1e-12; I=np.log1p(12*I)
I_full=np.concatenate([I[:,::-1],I],axis=1)
extent=[-kp_max,kp_max,-kz_max,kz_max]
plt.figure(figsize=(6,8))
plt.imshow(I_full,extent=extent,origin='lower',aspect='auto')
plt.axis('off')
plt.savefig('photo51_like.png',dpi=220,bbox_inches='tight',pad_inches=0.02)
https://t.co/HDadZBCvO4()](/_next/image?url=https%3A%2F%2Fpbs.twimg.com%2Fprofile_images%2F1225476100547063809%2F53jSWs7z_400x400.jpg&w=3840&q=75)
Here’s the final image straight from python.
