Il existe une quantité maximale d'informations pouvant être extraites de tout système. Nous pouvons donc considérer la constante de Planck comme une constante de proportionnalité entre les unités physiques et les unités théoriques de l'information (bits). Le principe de l'action stationnaire est également un principe de stabilité informationnelle. La trajectoire observée est celle qui minimise le coût informationnel, c'est-à-dire celle qui requiert le moins de bits pour décrire l'évolution de l'état initial à l'état final. L'action S est une mesure de l'information ; dans la formulation par intégrale de chemin, l'état du système est une somme d'amplitudes définies par exp^{i * information}. Chaque trajectoire résulte de la somme des informations nécessaires à la description du système et de son évolution. La trajectoire observée n'émerge pas d'une minimisation naturelle, mais de l'interaction constructive entre les trajectoires voisines, dont le contenu informationnel est similaire et les phases synchronisées. Les chemins alternatifs, perturbés par le bruit, contiennent des informations excessives et contradictoires qui s'annulent. Le chemin observé représente un consensus informationnel stable. C'est le seul scénario où les phases se synchronisent, permettant ainsi à une réalité robuste et exploitable d'émerger du bruit quantique. Lorsque l'environnement est silencieux et ne recueille aucune information, la pression pour parvenir à un consensus unique disparaît. Dans cet isolement informationnel, les phases, même sur des chemins très divergents, conservent leur cohérence, permettant au système d'explorer physiquement et simultanément de multiples histoires conflictuelles. Le monde classique est ainsi un effet relationnel ; il ne se solidifie que lorsque l'environnement « interroge » le système, contraignant le réseau privé des possibilités quantiques à se réduire à un fait unique et public.
Chargement du thread
Récupération des tweets originaux depuis X pour offrir une lecture épurée.
Cela ne prend généralement que quelques secondes.
