LogoThread Easy
  • Explore
  • Thread Compose
LogoThread Easy

Your All-in-One Twitter Thread Companion

© 2025 Thread Easy All Rights Reserved.

Explore

Newest first — browse tweet threads

Keep on to blur preview images; turn off to show them clearly

Why are Zionists so Sinophobic now? 
Cynically, I think they want to ensure that the US remains a hegemon. But imo they're making a mistake painting a target on Israel's back. If it looks like it's Israel rather than the US proper that is an active, existential threat to China…

Why are Zionists so Sinophobic now? Cynically, I think they want to ensure that the US remains a hegemon. But imo they're making a mistake painting a target on Israel's back. If it looks like it's Israel rather than the US proper that is an active, existential threat to China…

.@StevenGlinert explain the Jewish 4D chess here

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Sat Dec 20 08:29:26
A: "Nvidia has been known to do some funky numerical things. You know that time when the result looked like fp32 but they secretly accumulated in 22 bits? A lot of folks got mad at that one"
B: "Oh you mean the tf32 dtype, which is actually secretly fp23?"
C: "No, I'm talking about float8 accumulation on Hopper wgmma's, which were secretly done in fp22. The tf32 is a totally different case"

A conversation I had today

A: "Nvidia has been known to do some funky numerical things. You know that time when the result looked like fp32 but they secretly accumulated in 22 bits? A lot of folks got mad at that one" B: "Oh you mean the tf32 dtype, which is actually secretly fp23?" C: "No, I'm talking about float8 accumulation on Hopper wgmma's, which were secretly done in fp22. The tf32 is a totally different case" A conversation I had today

@thinkymachines Formerly @PyTorch "My learning style is Horace twitter threads" - @typedfemale

avatar for Horace He
Horace He
Sat Dec 20 08:18:17
Funnily enough the Chinese are selling, ebay is chock full of their listings, from normal cards to double-stacked to scrap.

Funnily enough the Chinese are selling, ebay is chock full of their listings, from normal cards to double-stacked to scrap.

We're in a race. It's not USA vs China but humans and AGIs vs ape power centralization. @deepseek_ai stan #1, 2023–Deep Time «C’est la guerre.» ®1

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Sat Dec 20 08:12:12
Very quietly, this «memory supercycle» stuff has priced an increasing number of consumers out of upgrades or maintenance, out of hardware that can run AI, or even do RAM-heavy workloads. Now we get priced out of storage too. The Mainframe reigns supreme.
It's a weird timeline.

Very quietly, this «memory supercycle» stuff has priced an increasing number of consumers out of upgrades or maintenance, out of hardware that can run AI, or even do RAM-heavy workloads. Now we get priced out of storage too. The Mainframe reigns supreme. It's a weird timeline.

Funnily enough the Chinese are selling, ebay is chock full of their listings, from normal cards to double-stacked to scrap.

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Sat Dec 20 08:10:36
Andrej Karpathy 是 OpenAI 联合创始人、前特斯拉 AI 总监,也是全球最有影响力的 AI 研究者之一。他刚刚发布了一篇 2025 年 LLM 年度回顾。

第一个大变化:训练方法的范式升级

2025 年之前,训练一个好用的大模型基本是三步走:预训练、监督微调、人类反馈强化学习。这个配方从 2020 年用到现在,稳定可靠。

2025 年多了关键的第四步:RLVR,全称是 Reinforcement Learning from Verifiable Rewards,翻译过来就是「可验证奖励的强化学习」。

什么意思?简单说,就是让模型在「有标准答案」的环境里反复练习。比如数学题,答案对就是对,错就是错,不需要人来打分。代码也一样,能跑通就是能跑通。

这和之前的训练有什么本质区别?之前的监督微调和人类反馈,本质上是「照葫芦画瓢」,人给什么样本,模型学什么样本。但 RLVR 不一样,它让模型自己摸索出解题策略。就像学游泳,之前是看教学视频模仿动作,现在是直接扔水里,只要你能游到对岸,怎么划水我不管。

结果呢?模型自己「悟」出了看起来像推理的东西。它学会了把大问题拆成小步骤,学会了走错路时回头重来。这些策略如果靠人类标注示范,根本标不出来,因为人自己也说不清「正确的思考过程」长什么样。

这个变化带来一个连锁反应:算力的分配方式变了。以前大部分算力砸在预训练阶段,现在越来越多算力用于 RL 阶段。模型的参数规模没怎么涨,但推理能力飙升。OpenAI 的 o1 是这条路的起点,o3 是真正让人「感觉到不一样」的拐点。

还有个新玩法:推理时也能花更多算力。让模型「想久一点」,生成更长的推理链条,效果就更好。这相当于多了一个调节能力的旋钮。

第二个大变化:我们终于搞懂了 AI 是什么「形状」的聪明

Karpathy 用了一个很妙的比喻:我们不是在「养动物」,而是在「召唤幽灵」。

人类的智能是进化出来的,优化目标是「在丛林里让部落活下去」。大模型的智能是训练出来的,优化目标是「模仿人类文本、在数学题里拿分、在评测榜单上刷分」。

优化目标完全不同,出来的东西当然也完全不同。

所以 AI 的智能是「参差不齐」的,英文叫 jagged intelligence。它可以在某些领域表现得像全知全能的学者,同时在另一些领域犯小学生都不会犯的错。上一秒帮你推导复杂公式,下一秒被一个简单的越狱提示骗走你的数据。

为什么会这样?因为哪个领域有「可验证的奖励」,模型在那个领域就会长出「尖刺」。数学有标准答案,代码能跑测试,所以这些领域进步飞快。但常识、社交、创意这些领域,什么是「对」很难定义,模型就没法高效学习。

这也让 Karpathy 对基准测试失去了信任。道理很简单:测试题本身就是「可验证环境」,模型完全可以针对测试环境做优化。刷榜变成了一门艺术。所有基准都刷满了,但离真正的通用智能还差得远,这是完全可能发生的事。

第三个大变化:LLM 应用层浮出水面

Cursor 今年火得一塌糊涂,但 Karpathy 认为它最大的意义不是产品本身,而是证明了「LLM 应用」这个新物种的存在。

大家开始讨论「X 领域的 Cursor」,这说明一种新的软件范式成立了。这类应用做什么?

第一,做上下文工程。把相关信息整理好,喂给模型。
第二,编排多个模型调用。后台可能串了一堆 API 调用,平衡效果和成本。
第三,提供专业场景的界面。让人类能在关键节点介入。
第四,给用户一个「自主程度滑杆」。你可以让它多干点,也可以让它少干点。

有个问题被讨论了一整年:这个应用层有多「厚」?模型厂商会不会把所有应用都吃掉?

Karpathy 的判断是:模型厂商培养的是「有通用能力的大学毕业生」,但 LLM 应用负责把这些毕业生组织起来、培训上岗,变成能在具体行业干活的专业团队。数据、传感器、执行器、反馈循环,这些都是应用层的活。

第四个大变化:AI 搬进了你的电脑

Claude Code 是今年最让 Karpathy 印象深刻的产品之一。它展示了「AI 智能体」应该长什么样:能调用工具、能做推理、能循环执行、能解决复杂问题。

但更关键的是,它跑在你的电脑上。用你的环境、你的数据、你的上下文。

Karpathy 认为 OpenAI 在这里判断失误了。他们把 Codex 和智能体的重心放在云端容器里,从 ChatGPT 去调度。这像是在瞄准「AGI 终局」,但我们还没到那一步。

现实是,AI 的能力还是参差不齐的,还需要人类在旁边看着、配合着干活。把智能体放在本地,和开发者并肩工作,才是当下更合理的选择。

Claude Code 用一个极简的命令行界面做到了这一点。AI 不再只是你访问的一个网站,而是「住在」你电脑里的一个小精灵。这是一种全新的人机交互范式。

第五个大变化:Vibe Coding 起飞了

2025 年,AI 的能力跨过了一个门槛:你可以纯用英语描述需求,让它帮你写程序,完全不用管代码长什么样。Karpathy 随手发了条推特,给这种编程方式起了个名字叫 vibe coding,结果这个词火遍全网。
这意味着什么?编程不再是专业程序员的专利,普通人也能做。这和过去所有技术的扩散模式都不一样。以前新技术总是先被大公司、政府、专业人士掌握,然后才慢慢下沉。但大模型反过来,普通人从中受益的比例远超专业人士。

不只是「让不会编程的人能编程」。对会编程的人来说,很多以前「不值得写」的小程序现在都值得写了。Karpathy 自己就用 vibe coding 做了一堆项目:用 Rust 写了个定制的分词器、做了好几个工具类 App、甚至写了一次性的程序只为找一个 bug。

代码突然变得廉价、即用即弃、像草稿纸一样随便写。这会彻底改变软件的形态和程序员的工作内容。

第六个大变化:大模型的「图形界面时代」要来了

Google 的 Gemini Nano Banana 是今年最被低估的产品之一。它能根据对话内容实时生成图片、信息图、动画,把回复「画」出来而不是「写」出来。

Karpathy 把这件事放到更大的历史脉络里看:大模型是下一个重大计算范式,就像 70 年代、80 年代的计算机一样。所以我们会看到类似的演进路径。

现在和大模型「聊天」,有点像 80 年代在终端敲命令。文字是机器喜欢的格式,但不是人喜欢的格式。人其实不爱读文字,读文字又慢又累。人喜欢看图、看视频、看空间布局。这就是传统计算机为什么要发明图形界面。

大模型也需要自己的「GUI」。它应该用我们喜欢的方式跟我们说话:图片、幻灯片、白板、动画、小应用。现在的 Emoji 和 Markdown 只是初级形态,帮文字「化个妆」。真正的 LLM GUI 会是什么样?Nano Banana 是一个早期暗示。

最有意思的是,这不只是图像生成的事。它需要把文本生成、图像生成、世界知识全部绞在一起,在模型权重里融为一体。

Karpathy 的总结是这样的:2025 年的大模型,比他预期的聪明,也比他预期的蠢。两者同时成立。

但有一点很确定:即使以现在的能力,我们连 10% 的潜力都没挖掘出来。还有太多想法可以试,整个领域感觉是敞开的。

他在 Dwarkesh 的播客里说过一句看似矛盾的话:
> 他相信进步会继续飞速推进,
> 同时也相信还有大量的工作要做。

两件事并不矛盾。2026 年系好安全带继续加速吧。

Andrej Karpathy 是 OpenAI 联合创始人、前特斯拉 AI 总监,也是全球最有影响力的 AI 研究者之一。他刚刚发布了一篇 2025 年 LLM 年度回顾。 第一个大变化:训练方法的范式升级 2025 年之前,训练一个好用的大模型基本是三步走:预训练、监督微调、人类反馈强化学习。这个配方从 2020 年用到现在,稳定可靠。 2025 年多了关键的第四步:RLVR,全称是 Reinforcement Learning from Verifiable Rewards,翻译过来就是「可验证奖励的强化学习」。 什么意思?简单说,就是让模型在「有标准答案」的环境里反复练习。比如数学题,答案对就是对,错就是错,不需要人来打分。代码也一样,能跑通就是能跑通。 这和之前的训练有什么本质区别?之前的监督微调和人类反馈,本质上是「照葫芦画瓢」,人给什么样本,模型学什么样本。但 RLVR 不一样,它让模型自己摸索出解题策略。就像学游泳,之前是看教学视频模仿动作,现在是直接扔水里,只要你能游到对岸,怎么划水我不管。 结果呢?模型自己「悟」出了看起来像推理的东西。它学会了把大问题拆成小步骤,学会了走错路时回头重来。这些策略如果靠人类标注示范,根本标不出来,因为人自己也说不清「正确的思考过程」长什么样。 这个变化带来一个连锁反应:算力的分配方式变了。以前大部分算力砸在预训练阶段,现在越来越多算力用于 RL 阶段。模型的参数规模没怎么涨,但推理能力飙升。OpenAI 的 o1 是这条路的起点,o3 是真正让人「感觉到不一样」的拐点。 还有个新玩法:推理时也能花更多算力。让模型「想久一点」,生成更长的推理链条,效果就更好。这相当于多了一个调节能力的旋钮。 第二个大变化:我们终于搞懂了 AI 是什么「形状」的聪明 Karpathy 用了一个很妙的比喻:我们不是在「养动物」,而是在「召唤幽灵」。 人类的智能是进化出来的,优化目标是「在丛林里让部落活下去」。大模型的智能是训练出来的,优化目标是「模仿人类文本、在数学题里拿分、在评测榜单上刷分」。 优化目标完全不同,出来的东西当然也完全不同。 所以 AI 的智能是「参差不齐」的,英文叫 jagged intelligence。它可以在某些领域表现得像全知全能的学者,同时在另一些领域犯小学生都不会犯的错。上一秒帮你推导复杂公式,下一秒被一个简单的越狱提示骗走你的数据。 为什么会这样?因为哪个领域有「可验证的奖励」,模型在那个领域就会长出「尖刺」。数学有标准答案,代码能跑测试,所以这些领域进步飞快。但常识、社交、创意这些领域,什么是「对」很难定义,模型就没法高效学习。 这也让 Karpathy 对基准测试失去了信任。道理很简单:测试题本身就是「可验证环境」,模型完全可以针对测试环境做优化。刷榜变成了一门艺术。所有基准都刷满了,但离真正的通用智能还差得远,这是完全可能发生的事。 第三个大变化:LLM 应用层浮出水面 Cursor 今年火得一塌糊涂,但 Karpathy 认为它最大的意义不是产品本身,而是证明了「LLM 应用」这个新物种的存在。 大家开始讨论「X 领域的 Cursor」,这说明一种新的软件范式成立了。这类应用做什么? 第一,做上下文工程。把相关信息整理好,喂给模型。 第二,编排多个模型调用。后台可能串了一堆 API 调用,平衡效果和成本。 第三,提供专业场景的界面。让人类能在关键节点介入。 第四,给用户一个「自主程度滑杆」。你可以让它多干点,也可以让它少干点。 有个问题被讨论了一整年:这个应用层有多「厚」?模型厂商会不会把所有应用都吃掉? Karpathy 的判断是:模型厂商培养的是「有通用能力的大学毕业生」,但 LLM 应用负责把这些毕业生组织起来、培训上岗,变成能在具体行业干活的专业团队。数据、传感器、执行器、反馈循环,这些都是应用层的活。 第四个大变化:AI 搬进了你的电脑 Claude Code 是今年最让 Karpathy 印象深刻的产品之一。它展示了「AI 智能体」应该长什么样:能调用工具、能做推理、能循环执行、能解决复杂问题。 但更关键的是,它跑在你的电脑上。用你的环境、你的数据、你的上下文。 Karpathy 认为 OpenAI 在这里判断失误了。他们把 Codex 和智能体的重心放在云端容器里,从 ChatGPT 去调度。这像是在瞄准「AGI 终局」,但我们还没到那一步。 现实是,AI 的能力还是参差不齐的,还需要人类在旁边看着、配合着干活。把智能体放在本地,和开发者并肩工作,才是当下更合理的选择。 Claude Code 用一个极简的命令行界面做到了这一点。AI 不再只是你访问的一个网站,而是「住在」你电脑里的一个小精灵。这是一种全新的人机交互范式。 第五个大变化:Vibe Coding 起飞了 2025 年,AI 的能力跨过了一个门槛:你可以纯用英语描述需求,让它帮你写程序,完全不用管代码长什么样。Karpathy 随手发了条推特,给这种编程方式起了个名字叫 vibe coding,结果这个词火遍全网。 这意味着什么?编程不再是专业程序员的专利,普通人也能做。这和过去所有技术的扩散模式都不一样。以前新技术总是先被大公司、政府、专业人士掌握,然后才慢慢下沉。但大模型反过来,普通人从中受益的比例远超专业人士。 不只是「让不会编程的人能编程」。对会编程的人来说,很多以前「不值得写」的小程序现在都值得写了。Karpathy 自己就用 vibe coding 做了一堆项目:用 Rust 写了个定制的分词器、做了好几个工具类 App、甚至写了一次性的程序只为找一个 bug。 代码突然变得廉价、即用即弃、像草稿纸一样随便写。这会彻底改变软件的形态和程序员的工作内容。 第六个大变化:大模型的「图形界面时代」要来了 Google 的 Gemini Nano Banana 是今年最被低估的产品之一。它能根据对话内容实时生成图片、信息图、动画,把回复「画」出来而不是「写」出来。 Karpathy 把这件事放到更大的历史脉络里看:大模型是下一个重大计算范式,就像 70 年代、80 年代的计算机一样。所以我们会看到类似的演进路径。 现在和大模型「聊天」,有点像 80 年代在终端敲命令。文字是机器喜欢的格式,但不是人喜欢的格式。人其实不爱读文字,读文字又慢又累。人喜欢看图、看视频、看空间布局。这就是传统计算机为什么要发明图形界面。 大模型也需要自己的「GUI」。它应该用我们喜欢的方式跟我们说话:图片、幻灯片、白板、动画、小应用。现在的 Emoji 和 Markdown 只是初级形态,帮文字「化个妆」。真正的 LLM GUI 会是什么样?Nano Banana 是一个早期暗示。 最有意思的是,这不只是图像生成的事。它需要把文本生成、图像生成、世界知识全部绞在一起,在模型权重里融为一体。 Karpathy 的总结是这样的:2025 年的大模型,比他预期的聪明,也比他预期的蠢。两者同时成立。 但有一点很确定:即使以现在的能力,我们连 10% 的潜力都没挖掘出来。还有太多想法可以试,整个领域感觉是敞开的。 他在 Dwarkesh 的播客里说过一句看似矛盾的话: > 他相信进步会继续飞速推进, > 同时也相信还有大量的工作要做。 两件事并不矛盾。2026 年系好安全带继续加速吧。

Prompt Engineer, dedicated to learning and disseminating knowledge about AI, software engineering, and engineering management.

avatar for 宝玉
宝玉
Sat Dec 20 08:02:25
RT @Molson_Hart: People share these statistics like they mean something in terms of who is winning and losing.

Whichever country is gainin…

RT @Molson_Hart: People share these statistics like they mean something in terms of who is winning and losing. Whichever country is gainin…

We're in a race. It's not USA vs China but humans and AGIs vs ape power centralization. @deepseek_ai stan #1, 2023–Deep Time «C’est la guerre.» ®1

avatar for Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Teortaxes▶️ (DeepSeek 推特🐋铁粉 2023 – ∞)
Sat Dec 20 08:01:44
  • Previous
  • 1
  • More pages
  • 275
  • 276
  • 277
  • More pages
  • 5634
  • Next